Dolphins Talking

Bottlenose dolphins are among the most vocal of the nonhuman animals and exhibit
remarkable development of the sound production and auditory mechanisms. This can
be seen in audition, which is shown in the animal`s highly refined echolocation
ability, and in tightly organized schools in which they live that are made up by
sound communication. In testing the communication skills of dolphins, extensive
studies have been done on vocal mimicry, in which the animal imitates
computer-generated sounds in order to test motor control in terms of cognitive
ability. Language comprehension on the other hand has been tested through
labeling of objects, which has proven to be successful regarding the association
of sound and object stimulus. The biggest question in dolphin communication, is
whether or not the species is capable of intentional communicative acts. Though
results from studies have been debatable, the key to understanding the extent to
this :language; is to determine whether they have a repertoire of
grammatical rules that generate organized sequences. In determining this, the
greatest accomplishment for both the scientist and all of humanity, would be to
accomplish interspecies communication, creating a bridge between humans and
animals which could open up a new understanding of the unknown world of
wildlife. Most importantly, it is necessary to understand the incredible
aptitude of dolphin communicative skills, and the impressive intelligence the
animal possesses which allows for a great deal of intraspecies and interspecies
communication (Schusterman, Thomas, & Wood, 1986). The acoustical reception
and processing abilities of the bottlenosed dolphins have generally been shown
to be among the most sophisticated of any animal so far examined (Popper, 1980
as cited by Schusterman et al. 1986). In order to understand the complexity of
these highly mechanized acoustic systems, it is necessary to learn the process
for which the dolphin hears. In most water-adapted cetaceans, tissue conduction
is the primary route of sound conduction to the middle ear. The isolation of the
bullae shows an adaptation for tissue-conducted sound. The lower jaw contains
fat that is closely associated with the impedance of seawater. The lower jawbone
of most odontocetes becomes broadened and quite thin posteriorly, and the fat
forms an oval shape that closely corresponds to the area of minimum thickness of
the jaw. This fat body leads directly to the bulla, producing a sound path to
the ear structures located deep within the head. Paired and single air sacs are
scattered throughout the skull, which serve to channel these tissue-conducted
sounds (Popov & Supin, 1991). Other than this description, there are still
more studies needed to determine the function of the middle ear and the type of
bone conduction that occurs within the bulla. Due to detailed audiograms,
dolphins have been shown to have the ability to detect high-frequency sounds. In
an experiment by Johnson (1966) as cited in Schusterman et al. (1986), sine-wave
sounds ranging in frequency from 75 Hz to 150 Hz were presented to a
bottle-nosed dolphin. The animal was trained to swim in a stationary area within
a stall and to watch for a light to come on. Following the light presentation a
sound was sometimes presented. If the dolphin heard the sound, its task was to
leave the area and push a lever. Sound intensity levels were varied by a
staircase method of 1, 2, or 3 dB steps. The resulting audiogram, compared to
the human aerial audiogram, showed that at regions of best sensitivity for each,
thresholds for human and dolphin are quite similar, but separated by about 50
kHz in frequency, showing that the animal・s inner ear function is very
similar to a human. The experiments done on dolphin auditory functions have
generally shown a finely adapted sound reception system. This would be expected
due to the highly adapted echolocation ability of the bottlenosed dolphin and
other cetaceans. Results of work on absolute thresholds, critical bandwidths,
frequency discrimination, and sound localization all indicate that the dolphin
auditory system is at least as good or better than the human system. This is in
spite of the fact that sound travels five times as fast under water as it does
in air (Popov et al. 1991). The bottlenosed dolphin in captivity produces two
categories of vocalizations: (a) narrow-band, frequency-varying, continuous
tonal sounds referred to as :whistles; and (b) broad-band pulsed sounds
expressed as trains of very short duration clicks of varying rates (Evans, 1967,
as cited in Schusterman et al. 1986). The pulsed sounds are used for both
communication and echolocation, and the whistles are found to be used primarily
for communication (Herman & Tavolga, 1980, as cited in Schusterman et al.

1986). Descriptions in literature emphasizing either the whistles or the pulsed
sounds have led to contradictory hypotheses concerning the communication system
of the dolphin. It has been reported that individually specific whistles often
make up over 90% of the whistle repertoire of captive bottlenosed dolphins (Popov
et al. 1991). A number of observations of apparent vocal mimicry have been made,
though with no systematic investigation of the degree of vocal flexibility. The
observed variability in the whistles, combined with the difficulty of
identifying individual vocalizing dolphins in a group, has led to speculation
that the whistles might be a complex, shared system, in which specific meanings
could be assigned to specific whistles. Consideration of vocal mimicry has been
taken to understand its relation to cognitive complexity, and to the potential
use of vocal response for communication in an artificial language. In one study
done by McCowan, Hanser, & Doyle, (1999), the dolphin was able to learn to
mimic a number of computer-generated model sounds with high fidelity and
reliability. The dolphin using its whistle mode of vocalization imitated all of
the sounds, and all were distinct from the unreinforced whistles produced prior
to training. The large majority of each dolphin・s whistle vocalizations were
individually specific acoustic patterns, described as a :signature whistle;;
the rest of the whistles were short chirps. The results of the mimicry training
have shown that dolphins can mimic tonal sounds with frequencies between 4 and

20 Hz. Due to this research, scientists can now learn from these mimicry skills
how to understand and develop natural communication based on a stronger emphasis
on the animal・s cognitive abilities (Brecht, 1993). In object labeling, the
dolphins seemed to understand the task of associating model sounds with
displayed objects. Progress was most rapid when the model sound was always
presented at full intensity, but the probability of its being presented on any
given trial was systematically decreased over successive trials. There wasn・t
any confusion of the objects themselves, but only a tendency to drift in the
quality of the rendition of the labels. This demonstration of symbolic use of
vocalizations could lead to the investigation of the potential of animals to
form referential concepts, thus creating a new understanding of dolphin
communication and its uses in the wild. The main purpose of study in dolphin
language, is the interest in whether the animal・s speech is intentional
communication like our own human speech. The fact that awareness as applied to
the phenomena of human communication also implies something we would not
attribute to animals-and this is the awareness that communicative acts are
behaviors about behaviors (Crook, 1983, as cited in Schusterman et al. 1986).

Language, as we know it, could not exist without the capacity for intentional
communication, as all linguistic communications are, by definition, intentional.

Dolphins have been observed to have some of these intentional communication
characteristics, as their behaviors have shown in captivity. For example,
dolphins have been observed to squirt or splash water at strangers who come near
their tank. After squirting the water the dolphin will raise itself out of the
water to curiously observe what effect their behavior had on the stranger.

Although this behavior is not communitive, nonetheless, it seems to suggest that
the dolphin is aware of the effect of its behavior on others, showing that it
has the cognitive ability for intentional communication (Erickson, 1993).

Communication between humans and dolphins occurs mostly through a gestural
language that borrows some words from American Sign Language. The trainers make
the gestures with big arm movements, asking the animal to follow commands such
as :person left Frisbee fetch,; which means :bring the Frisbee on the
left to the person in the pool;. In one study, two bottlenosed dolphins were
tested in proficiency in interpreting gestural language signs and compared
against humans who viewed the same videos of veridical and degraded gestures.

The dolphins were found to recognize gestures as accurately as fluent humans,
and the results suggested that the dolphins had constructed an interconnected
network of semantic and gestural representations in their memory (Herman, Morrel-Samuels,
& Pack, 1990). Such requests probe the dolphins understanding of word order
and test the animal・s grammatical competence. It has also been determined
that dolphins can form a generalized concept about an object: they respond
correctly to commands involving a hoop, no matter whether the hoop is round,
octagonal, or square. The animals seem to have a conceptual grasp of the words
they learn, showing an understanding of the core attributes of human language,
those being semantics and syntax (Erickson, 1993). Though this information seems
compelling for dolphin language abilities, to determine whether or not they are
capable of complex intentional communications, researchers must continue to
investigate their receptive capacities, and to attempt to provide them with a
communication system that would tap their productive capacities. Is interspecies
communication possible? Could we someday be having philosophical discussions
with a bottlenosed dolphin? Though these questions seem ridiculous, there was
much debate over these questions when a medical doctor named John Lilly came out
with hopeful findings of dolphin intelligence in the 1960s (Shane, 1991). In the
first true research of dolphin communication and intelligence, Lilly set out to
show that through the correlation of brain size and IQ, the bottlenose dolphin
was perhaps smarter than humans and began a growing interest in dolphins and
their language through whistles. Though dolphins are exceedingly intelligent
creatures, no real scientific evidence has yet been found to totally support the
many conceptions about the animal・s intelligence. Lilly (1966) states, :A
dolphin . . . naturally uses other sounds to convey and receive .meaning・:
creaking for night-time and murky-water finding and recognition, putt-putting
and whistles for exchanges with other dolphins, and even air wailing to excite
human responses in the way of fish or applause. If a dolphin is copying our
speech, he・ll copy that part of what he hears which in his .language・
conveys meanings.; Although this excerpt shows an incredible capability for
dolphins to produce intelligent communication, it is findings such as these,
which lack scientific support and have lost credibility among other dolphin
researchers in the past few decades. Though his findings lack support, Lilly was
important in bringing forth interest among people and therefore funds towards
more scientifically based research and experiments that have helped us learn
more about communication skills and intelligence of dolphins (Tyack et al.

1989). In order to clearly understand if dolphins are creating intentional,
intelligent communicative sounds and meanings, it is necessary to break down the
vocal signals into repertoires and analyze those individually. The breaking down
of dolphin signaling into component units has just now begun and the task will
be to discover if, when, and to what extent they structure formalized sequences
of signal units. To determine whether they have a repertoire of grammatical
rules that generates organized sequences will be difficult, and it will be
necessary to obtain extended and continuous recordings. Patterns must be found
and compared to other dolphin recordings in order to obtain the most accurate
and universal findings for language among bottlenose dolphins (Herman, Kuczjac

II, & Holder, 1993). Through many more years of careful study of these
sounds, it is hopeful that our scientists can determine capacities and meanings
behind dolphin language. Though interspecies communication seems unlikely at
this point in time, through new studies being conducted our conception of
dolphins as communicative animals seems more possible. Intentional communication
through gestural understanding is the best finding so far in the study of these
intelligent animals, and leads many to believe there is a lot more to dolphin・s
communication skills than has yet been uncovered. In tests done in mimicry and
labeling of objects, it seems that the capacity the bottlenose dolphin has for
learning and understanding is large enough to make taught communication a
realistic goal in the future of dolphin training. The highly specialized
auditory and vocal mechanisms of the animal have helped lead the way to a better
understanding of cetacean ear anatomy and sound production mechanisms, and these
functions can now be seen as complex structures unlike any found above water.

Though more research needs to be done before any true conclusions can be made
about dolphin language, from what we do know the bottlenose dolphin is among the
most vocal of nonhuman animals and exhibits remarkable development of sound
production and auditory mechanisms (Schusterman et al. 1986).

Bibliography

1. Brecht, M. (1993). Communications: A Predictive Theory of Dolphin

Communication. Kybernetes, 22, 39-53. 2. Erickson, D. (1993, March). Can Animals

Think? Time, 146, 182-189. 3. Herman, L. M., Kuczaj II, S. A., & Holder, M.

D. (1993). Responses to Anomalous Gestural Sequences by a Language-Trained

Dolphin: Evidence for Processing of Semantic Relations and Syntactic

Information. Journal of Experimental Psychology, 122, 184-194. 4. Herman, L. M.,

Morrel-Samuels, P., & Pack, A. (1990). Bottlenosed Dolphin and Human

Recognition of Veridical and Degraded Video Displays of an Artificial Gestural

Language. Journal of Experimental Psychology, 119, 215-230. 5. Lilly, J. C.,
(1966). Lilly on Dolphins. Garden City, N.Y.: Anchor Books. Anchor

Press/Doubleday. 6. McCowan, B., Hanser, S. F., & Doyle, L.R. (1999).

Quantitative tools for comparing animal communication systems: information
theory applied to bottlenose dolphin whistle repertoires. Animal Behaviour, 57,

409-419. 7. Popov, V. V., & Supin, A. Y. (1991). Interaural intensity and
latency difference in the dolphin・s auditory system. Neuroscience Letters,

133, 295-297. 8. Schusterman, R. J., Thomas, J. A., & Wood, F. G. (1986).

Dolphin Cognition and Behavior: A Comparitive Approach. London: Lawrence Erlbaum

Associates, Publishers. 9. Shane, S. H. (1991). Smarts. Seafrontiers, 37, 40-43.

10. Supin, A. Y., Popov, V. V., & Klishin, V. O. (1993). ABR Frequency

Tuning Curves in Dolphins. Journal of Comparitive Psychology A, 173, 649-656.

11. Tyack, P. L.,& Sayigh, L. S. (1989). These Dolphins Aren・t Just

Whistling in the Dark. Oceanus, 32, 80-83.